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We consider turbulent shear flows in a rotating fluid, with the rotation axis parallel 
or antiparallel to the mean flow vorticity. It is already known that rotation such that 
the shear becomes cyclonic is stabilizing (with reference to the non-rotating case), 
whereas the opposite rotation is destabilizing for low rotation rates and restabilizing 
for higher. The arguments leading to and quantifying these statement are heuristic. 
Their status and limitations require clarification. Also, it is useful to formulate them 
in ways that permit direct comparison of the underlying concepts with experimental 
data. 

An extension of a displaced particle analysis, given by Tritton & Davies (1981) 
indicates changes with the rotation rate of the orientation of the motion directly 
generated by the shear/Coriolis instability occurring in the destabilized range. 

The ‘simplified Reynolds stress equations scheme ’, proposed by Johnston, Halleen 
& Lezius (1972), has been reformulated in terms of two angles, representing the 
orientation of the principal axes of the Reynolds stress tensor (a,) and the 
orientation of the Reynolds stress generating processes (ab), that are approximately 
equal according to the scheme. The scheme necessarily fails a t  large rotation rates 
because of internal inconsistency, additional to the fact that it is inapplicable to two- 
dimensional turbulence. However, it has a wide range of potential applicability, 
which may be tested with experimental data. a, and ab have been evaluated from 
numerical data for homogeneous shear flow (Bertoglio 1982) and laboratory data for 
a wake (Witt & Joubert 1985) and a free shear layer (Bidokhti & Tritton 1992). The 
trends with varying rotation rate are notably similar for the three cases. There is a 
significant range of near equality of a, and ab. An extension of the scheme, allowing 
for evolution of the flow, relates to the observation of energy transfer from the 
turbulence to the mean flow. 

1. Introduction 
This paper aims to clarify the processes involved in a turbulent shear flow in a 

rotating fluid. The main part is a reformulation of ideas originally introduced by 
Johnston, Halleen & Lezius (1972) to explain the stabilizing or destabilizing influence 
of rotation. This reformulation provides some additional understanding of their 
scheme and, more particularly, enables a more direct comparison of experimental 
data (laboratory or numerical experiments) with its predictions. It was motivated by 
the interpretation of data in an accompanying paper (Bidokhti & Tritton 1992) on 
a free shear layer in a rotating fluid. However, the ideas are of sufficient generality 
that it is useful to separate them from that particular context, and apply them also 
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to other flows. Additionally, it seems worthwhile expanding the discussion a little to 
relate the ideas to other discussions of this topic, as explained at the end of this 
section. 

The specific configuration under consideration is an approximately unidirectional 
shear flow in a rotating reference frame, with the vorticity associated with the shear 
parallel or antiparallel to that  of the system rotation. We choose Cartesian 
coordinates, so that the mean flow is in the x-direction with speed varying in the y- 
direction, U = (U(y),O,O). The system rotates with angular velocity 52 about the z- 
axis. The shear vorticity is 

and the effect of rotation is indicated by the ratio of the background vorticity to this : 

5 = -dU/dy (1) 

s = 2Q/5 (2) 

The principal results concerning the stabilizing or destabilizing action of rotation 
have been considered in a number of papers (Bradshaw 1969; Johnston et al. 1972 ; 
Tritton 1981; Tritton & Davies 1981). The term ‘stabilizing’ (or ‘destabilizing’) is 
used here in the same general sense as it is used in discussion of stratified flow ; i.e. 
one supposes that if the stability of a laminar flow is increased (decreased) by 
an external influence, then the corresponding turbulent flow is altered in structure to  
become in some sense less (more) vigorous. The main result is that, relative to the 
flow with SZ = 0, the effect of rotation is destabilizing when 

- l < S < O  (3) 

and stabilizing otherwise. Thus rotation in a sense such that S is positive is always 
stabilizing ; rotation in the opposite sense is initially destabilizing but this trend is 
reversed with increasing rotation rate (‘restabilization ’). (Of course, in general, and 
therefore S varies from place to  place in a way that may itself be modified by changes 
in the turbulence structure. Depending on the context, the ideas about stabilization 
etc. may apply locally or in some averaged sense.) This may be summarized by 
introducing 

and saying that the sign and size of B indicate the stabilization or destabilization in 
a similar way to the Richardson number in a stratified flow (with positive sign for 
stabilization and negative for destabilization). t 

However, the dynamical processes involved are less apparent than for stratified 
flow, mainly because the Coriolis force, unlike the buoyancy force, does not directly 
enter the turbulent energy balance equation ; instead, it modifies the turbulence in 
such a way that the transfer of energy from the mean flow to the turbulence, by the 
process present for 52 = 0, is weaker or stronger. Consequently, there is a greater need 
for heuristic models that  support the above statements and clarify the likely 
consequences of the stabilizing or destabilizing processes. (The need for such support 
is also indicated by the fact that an over-simple (in my opinion) argument, leading 
to qualitatively similar but quantitatively different conclusions, has gained some 
currency (e.g. Lesieur, Yanase & MBtais 1991). This supposes that destabilization 

t There has recently been an increasing tendency to call B the ‘Richardson number’ - and even 
to drop the quotation marks. In my opinion the analogy is not a very close one and this is a 
misleading nomenclature. B requires its own name. May I suggest the Bradshaw number. 

It is often convenient to refer to 8 rather than B ,  but i t  may be sufficient to call this the vorticity 
ratio or the reciprocal gradient Rosshy number rather than giving it a special name. 

B = S(l+S) (4) 
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arises from the cancellation of the rotational effect of the shear by that of the system 
rotation. It implies that maximum destabilization occurs when S = -1, and not 
S = -+ (maximum-B) (Tritton 1981).) 

The role of B was first stated by Bradshaw (1969), but with rather little 
explanation. Although he must have been aware of some of the ideas below in order 
to reach his conclusions, these are not made explicit. Bradshaw refers particularly to 
the analogy with stratified flow and introduces, without derivation, a ‘Brunt- 
Vaisala’ frequency for rotating shear flow ; this is real for B > 0 and imaginary for 
B < 0, and becomes just the intrinsic frequency of a rotating fluid, 2l2, when IS1 $- 1. 

Johnston et al. (1972) considered the production and Coriolis terms in the 
equations for the rates of change of each turbulence energy component and of the 
Reynolds shear stress. They supposed that the other terms in the equations, 
although not negligible, played comparatively little role in determining the relevant 
features of the turbulence structure. As discussed also by Tritton (1978), one can 
then see how the Coriolis terms alter that structure in a way that reduces or enhances 
the total energy transfer from the mean flow to the turbulence. This approach is 
referred to below as the simplified Reynolds stress equations (SRSE) scheme. 

Tritton & Davies (1981) gave a simple ‘displaced particle ’ argument showing the 
stabilizing or destabilizing role of Coriolis forces. This argument related, in the first 
place, to the stability of laminar flows. However, it may also be indicative of a 
process occurring within a turbulent flow. 

The interpretation of any of these arguments must be consistent with the long- 
established result (e.g. Hide 1977) that a strictly two-dimensional flow is unaffected 
by rotation about an axis perpendicular to the planes of motion. More precisely, if 
a two-dimensional velocity field is a solution of the equations of motion in the 
absence of rotation, then that same velocity field is also a solution in a rotating 
system, for any value of the rotation rate. The pressure field is modified by rotation. 
It is not always immediately apparent why arguments predicting changes with 
changing rotation rate do not apply to two-dimensional motion, a point that has 
perhaps not been adequately mentioned in previous discussions. 

We thus see that there are various contributions to our understanding of the action 
of rotation on turbulent shear flow, but that they are somewhat fragmented. 
Consequently, in addition to its primary purpose, explained above, of reformulating 
the SRSE scheme, this paper has a secondary purpose of showing some of the 
relationships between these contributions. 

2. Displaced particle analysis 
With this in mind, it is useful first to examine further the implications of the 

displaced particle argument of Tritton & Davies (1981). For convenience, the 
argument as given previously is briefly reproduced. Consider a shear flow as shown 
in figure 1 with positive dU/dy and positive SZ so that S is negative, and suppose that 
a small perturbation leads to a fluid particle being displaced a small distance 8 in the 
y-direction. (For ease of drawing, the particle is shown as a little blob. However, it 
should properly be thought of as a long thin rod in the x-direction; otherwise, 
longitudinal pressure gradients will arise in a way that invalidates the argument. 
Displaced and undisplaced ‘rods’ should then be thought of as a t  slightly different 
z, instead of the different x shown for the ‘ blobs ’.) In its undisplaced position it had 
longitudinal velocity U, and when displaced it has velocity V;. There is a Coriolis 
force 2p12nV1 acting on it as shown in figure 1 (p is fluid density). Similarly, a Coriolis 
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FIGURE 1.  Forces on displaced and undisplaced ‘particles’: see text. 

force 2p52U2 acts on an undisplaced particle a t  its new position and this will be 
balanced by a pressure gradient in the y-direction. That pressure gradient also acts 
on the displaced particle. Hence, the net force tends to displace the particle further 
if Ul < U, and to return it towards its original position if Ul > U,. U; + U, because 
of the Coriolis force that acted whilst the particle was moving with velocity v in the 
y-direction, 

Ul-Ul = 2S2vdt = 2528. (5) 

(6) 
dU 

I 
dU 

Hence, 

Remembering that we are considering negative (positive dU/dy) and negative S ,  we 
see that the particle tends to be displaced further if S > - 1,  restored if S < - 1. 

Corresponding considerations for positive S (Tritton & Davies 1981) show that the 
particle always tends to be restored in this case. 

There is thus a tendency to instability through a mechanism, to which the shear 
and Coriolis effects are both intrinsic, occurring in the range - 1 < S < 0. This 
tendency may be superimposed on any other instability mechanism, such as 
Kelvin-Helmholtz instability, that may be present even when 52 = 0. We consider 
briefly below the implications for turbulence structure. First, however, we examine 
the consequences of the argument a stage further. 

The net effect of the Coriolis and pressure forces on the displaced particle is a force 

U1-U,  = 252€--€ = --(S+l)€ = C(S+l)€. 
dY dY 

2p52(U2-u;) = -p$S(S+l)€.  (7) 

If therefore we continue to consider, not a full fluid flow, but an isolated particle not 
interacting with other particles except in the way considered above, 

and e = eo exp (at), (9) 
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whcrc v is real when - 1 < S < 0 and (choosing the positive root to correspond to the 
amplifying perturbation) 

v = -C[-S(S+ 1)]$. (10) 

CT is the magnitude of Bradshaw’s (1969) ‘Brunt-Vaisala frequency’ (which is 
imaginary in this range). 

Equation (9) implies 
w = m0 exp (d).  

u = Ul-U, = ~ ( 8 + 1 ) s o e x p ( v t )  

from (6). Hence, w/u = -[-S/(~+X)];  = t a n 0  (13) 

say; i.e. sin0 = &(-AS)$ (with tan0  < 0). (14) 

(11)  

Also, the x-component of the velocity of the particle relative to the basic flow is 

(12) 

Thus the effect of the instability is that  the particle tends to be accelerated away 
from its original position in a direction at an angle 0 to the flow direction. This angle 
is of some significance in the discussions of $3,  and we shall return t o  it there. 

Any displaced particle argument, of course, gives only limited information about 
any actual fluid flow. However, some inferences about the consequences of the 
shear/Coriolis instability mechanism may be made. A displacement with either 
positive or negative E is, of course, amplified. Also, motion in the z-direction is 
unaffected by Coriolis effects. Combined with the earlier remark that the particles 
should be considered as ‘rods’ in the x-direction, this suggests the generation of roll- 
like structures with their axes in the x-direction and circulation in planes at an angle 
8 to the x-direction. Various theoretical and experimental results on instabilities of 
laminar flows show such a structure. Most of these results are listed by Tritton & 
Davies (1981) ; some recent very striking examples have been given by Alfredsson & 
Persson (1989). I n  the present context of turbulent flow, the implication is that large 
eddies of a generally longitudinal roll-like character may arise spontaneously, 
superimposed on and interacting with the eddies from other eddy generating 
processes. Structures of this sort are prominent features in the observations of 
channel flow and boundary layers in a rotating fluid by Johnston et al. (1972) and 
Watmuff, Witt & Joubert (1985). Their role in a free shear layer is considered by 
Bidokhti & Tritton (1992). 

3. Simplified Reynolds stress equation scheme 
We come now to the central purpose of this paper, the reformulation of the 

approach, in terms of the energy component and Reynolds shear stress equations, of 
Johnston et al. (1972) (the SRSE scheme). The status and purpose of the scheme will 
be considered in the next section, but two comments should be made here. First, I 
have called it a ‘scheme’ rather than the more natural name of ‘model’, to avoid the 
implication that it has the status of an attempt to  represent all aspects of a turbulent 
flow sometimes implied by the term ‘turbulence modelling’. It has the more modest 
purpose of identifying key processes in the stabilization or destabilization of a shear 
flow by rotation. Secondly there are limitations to the applicability of the scheme 
that make it important to have a formulation in which one can check whether and 
when experimental observations correspond to the scheme. 

One of the implications of the scheme is that  the direction in which the turbulence 
is most intense (the orientation of the major principal axis of the Reynolds stress 

l i  FLM 241 
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tensor) is altered by the Coriolis effect. Although this implication can be seen from 
the conventional formulation, it is informative to make i t  more explicit. We use 
coordinates that are arbitrarily (in the first place) oriented with respect to  the flow 
direction ; i.e. we define 

x1 = xcosa+ys ina ;  x2 = -xsina+ycosa;  x3 = z ,  (15) 

U ,  = Ucosu; U, = -Usina, (16) 

u1 = ucosa+vs ina ;  u2 = -usina+vcosa;  u3 = w, (17) 

Because of the symmetry of the flow with respect to + z ,  the tensor axis rotation is 
confined to the (x, y)-plane. A range of n: in a is needed and we choose -in: < a < in. 

Standard procedures for determining turbulence energy and Reynolds stress 
equations lead to 

- 
D 4  - - - 2 5 3  cos a sin a + 2 c m  cos2 a + 48- + [OT], 
Dt 
- 

2 
-- Duz - - 2 5 2  cos a sin a - 2- sin2 a - 4SZ-+ [OT], 
Dt 

D(ul) = - 52 sin2 a + <G cos2 a+ sZ(2-2) + [OT], 
Dt 

where, as above, c = -dU/dy. I n  deriving these, Coriolis terms corresponding to  
rotation about the z-axis have been included, and it is still supposed that there is only 
one component of the mean velocity (in the old x-direction) varying in only one 
direction (the old y-direction). D/Dt denotes the rate of change following the mean 
flow. Putting a = 0 gives the equations as previously formulated. 

On the right-hand side of the equations, the only terms written explicitly are those 
corresponding to turbulence mean flow interaction and Coriolis effects. All other 
processes are lumped together as [OT] - 'other terms'. The implication is not that 
these terms are negligible (their role is considered further in $4). The idea is just that  
the primary effects of rotation can be perceived by considering the terms written 
explicitly in (18)-(21). For example, reverting for a moment to (a = 0, u1 = u,u2 = w), 
if rotation modifies these terms so as -- to increase D?/Dt and/or decrease Du2/Dt, a 
likely consequence is an increase in v2/u2. Such modifications can come about not 
only through the terms specifically involving 8 but also through changes in the 
'production' terms in turn arising from the changes in 2 etc. For further discussion 
.in the context of the usual coordinates, see Tritton (1978). 

I n  applying such ideas to  the above equations, it is convenient to combine 
(18)-(20) to give 

- 
- -  !?f = <[(u: - ui) sin 2a + 2- cos 2a] + [OT], 

Dt 
- - - - - - - 

where q 2  = U2+?P+W2 = u;+u;+u;, (23) 

- (u; - ui) = g[(u: + uz) sin 2a - 2 u , (  1 + 25)] + LOT], (24) 

and to give 
- -  D -  - 

Dt 
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S being defined in equation (2) .  It is also convenient to rewrite (21) in the form 

D(K%) = ~5[-(~-~)(1+2S)+(~+~)cos2a]+[OT]. 
Dt 

Two values of a are of particular significance. We call them a, and ab. 
The first is the angle that makes x1 and x2 coincide with principal axes of the 

Reynolds stress tensor (xg does so automatically by symmetry). This implies that 
?z& = 0 and so (22) and (24) become 

and 

D F  - - -- - c(u: - ui) sin 2a, + [OT] 
Dt 

D -  T -  - - 
- (u: - u2) - c(u: + u!) sin 2a, + [OT]. 
Dt 

Note that, both before and after this last stage, the equation for D?/Dt - -  did not 
contain a term explicitly involving S (and thus 52) ; the equation for D(u: - u i ) /D t  did 
involve such a term before the last stage but does not do so after. None of these facts 
implies _ _  that rotation is playing no role in the equations; for example, in (26) ,  both 
(u:-ui) and a, will, in general, be affected by rotation. 
_ _  In relating to principal axes it is convenient to define these more precisely so that 
u: > ui. We are already working to the convention that axes are chosen so that 5 < 0. 
Hence, from (26) ,  any behaviour for which the turbulence is extracting energy from 
the mean motion requires sin 2a, < 0; i.e. -in < a, < 0. This is saying no more than 
that -maU/ay  must be positive, but it is a point that needs to be clear in the 
following discussion. 

The other value of a that is of interest is the value that makes 

D(-)/Dt = 0 (28) 

when the [OT] are ignored; i.e. the value for which the mean flow interaction and 
Coriolis terms make no net contribution to the cross-correlation. From (25)  

_ _  _ _  
C 0 S 2 0 1 b  = ( U ; - U i )  (1+2S)/(U:+Ui). (29) 

The basic idea behind the SRSE scheme can be restated as saying that one 
supposes that 

i.e. that the orientation of the principal axes is governed by the orientation of the 
turbulence generating processes. 

Stabilization or destabilization of the flow can be understood in the first place by 
considering a, = ab exactly. Equations _ _  (26)  and (27) indicate that there is _ _  a joint 
process in a shear f l o w b ~  which (u:-ui) contributes to the _ _  generation of (ui+ui) 
(and so to $), and (q+ui)  contributes to the generation of (u: -ui). The rate of each 
generation process is proportional to -sin 201,. One therefore anticipates that the 
turbulence energy generation process will be most efficient and so the turbulence 
most vigorous when -sin 201, has its maximum value of 1 ; i.e. when a, = -in and 
cos2a, = 0.  From (29)  and the supposition that a, = ab, this occurs when 

a, ab, (30) 

1+25 = 0, 
which may be expressed as 

2~ = taulay. 
17-2 
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Remembering that we are thinking in terms of aU/ay being fixed and SZ, and so S ,  
being varied and also that we are using the flow with S = 0 as the point of reference, 
one can say that maximum destabilization occurs a t  S = -a. The further S is from 
this value, the further the principal axis is rotated round from its optimum 
orientation of a, = -an and the less effective the turbulence generation process 
becomes. Thus, starting a t  SZ = 0, increasing the rotation rate so that S is positive 
is always stabilizing, but increasing i t  so that S is negative is initially destabilizing 
and subsequently restabilizing. 

How rapidly ab (and so a, according to the scheme) rotates as S is varied depends 
on ( u : - u ~ ) / ( u ~ + u ~ ) ;  i.e. on the anisotropy of the turbulence as measured by u:/ui. 
In  the limiting case of 2 = 0, ab is identical with the angle 8 introduced in $2 
(equation (13)). The SRSE scheme then describes the type of motion discussed there. 
In turbulent motion, with 2 =+ 0, ab rotates with varying S more slowly than 8 does. 
Equation (29)  has a solution only when the right-hand side lies between -1 and 1. 
When S becomes too large, the scheme is bound to fail. However, provided ut/ui is 
not too large, its range of potential applicability may extend well into the stabilized 
and restabilized regions (in contrast with the fact that 8 is defined only for 

Information on the anisotropy has to be obtained empirically. This is not 
surprising since it is the case when SZ = 0. The scheme does, however, indicate 
relative effects - i.e. the likely trend with varying rotation - in a way that may be 
compared with the empirical information. 

Before considering this, i t  is useful to note that the scheme implies symmetry of 
developments about S = -;. I n  so far as the developments are determined by (26), 
(27) and (29)  with the [OT] playing only a passive role and with a, = ab, the same 
value of IS + $1 implies the same values of sin 2a, (although opposite signs of cos 2a,, 
and the same values of (u: - ui)/(uf + ut). In  particular, there is symmetry between 
S = O a n d S = - 1 .  

Destabilization -- increases the anisotropy of the turbulence, in the sense that it 
increases u:/ui. This is most immediately apparent if we return to (18) and (19) ,  
which, for a = a, and so 

- - - -  - _  

- -  

- 1  < S < O ) .  

- - - -  

= 0, become 
- 

Du: 
- = c 2 s i n  2a, + [OT], 
Dt 

D 2  
- Dt = -[2sin2aa+[OT]. 

(33) 

(34) 

Since, as noted above, [sin 2a, is positive, there is a transfer of energy from the mean 
motion to the energy of the component in the major principal axis direction and a 
smaller transfer to the mean motion from that in the minor principal axis direction. 
The anisotropy is thus self-perpetuating (but limited by the [OT] which include 
intercomponent transfer terms). This effect is strongest when -sin 2aa is maximum ; 
i.e. around the peak of destabilization. 

4. Status and purpose of the SRSE scheme 
The SRSE scheme, in its previous formulation by Johnston et al. (1972), has 

played an important role in our understanding of shear flows in rotating fluids. It was 
successful, for example, in accounting for the observations of channel flow turbulence 
by Johnston et al. themselves. If and when it  is applicable then it provides valuable 
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insight into the basic dynamical processes. One naturally wants to turn to it in 
interpreting new experiments and in predicting features of the flow in yet further 
configurations. There are, however, significant queries about and limitations to its 
applicability, in addition to the fact that (29) has no solution when IS) is too large. 

These arise from the ignored [OT]. As mentioned in $3, the supposition is not that 
the [OT] are negligible, but only that they do not act in a way that causes marked 
departures from relationship (30). It is to be noted that, in the cases to be examined 
in $57 and 8 (figures 2, 4 and 6;  see also table 1 in $6.3 of Bidokhti & Tritton 1992), 
a, z ab when SZ = 0. One thus has a good starting point for using the SRSE scheme 
to understand the effect of varying a. It is, however, a necessary rather than a 
sufficient condition for so doing: the [OT] will vary with SZ, and may do so in ways 
that introduce bigger differences between 01, and ab. 

One process that is likely to be changed is the dissipation. For example, changes 
in this are an important aspect of the interpretation of the free shear layer 
observations in Bidokhti & Tritton (1992). It is plausible, however, that such 
changes do not reorient the larger-scale structure in a way that would make a, and 
ab differ. The implication is that the SRSE scheme will not account for all the effects 
of rotation but may still capture central aspects of the turbulence-mean flow 
interaction. 

More problematic are the terms of the form p(au,/azj++uj/+x6) (11 being the 
pressure fluctuation), that, for example (i = j), transfer energy between components. 
- In one respect, such terms are essential to the scheme: they provide energy for 
w2( = 2) and changes in them permit 2 to be involved in the consequences - -  of 
stabilization or destabilization (cf. (20)). Provided 2 shows similar -- trends to (u2 +v2),  -- 
this introduces no problem with the scheme (cf. the concept of w2/u2 ‘following’ vz/u2 
in $57.2 and 7.3 of Bidokhti & Tritton 1992). The problematic aspect is the 
possibility of redistribution within the (z, y)-plane, thus changing a,. That this needs 
consideration is emphasized by considering two-dimensional turbulence. 

As mentioned in $ 1, a two-dimensional turbulent motion will remain unchanged as 
the rotation rate varies. In practice this is a result of limited applicability, since two- 
dimensional turbulence (or an approximation to it) occurs only when three- 
dimensionality is suppressed by rapid rotation. The result only implies that, once one 
has reached this state, still further increase in the rotation rate will have no effect. 
This means that it is relevant only to large 1x1. We have seen that the SRSE scheme 
then fails in any case because of the absence of a solution of (29). However, it raises 
an important point of principle. If one considers a hypothetical two-dimensional 
turbulent motion at low or moderate S ,  then the scheme would appear to apply and 
to predict changes. This failure of the scheme is due to the pressure-strain correlation 
terms that transfer energy between components. In a strictly two-dimensional 
motion, rotation modifies these in a way that exactly cancels out the corresponding 
transfer by Coriolis effects. 

Failure of the scheme in this hypothetical situation raises the question of whether 
similar failure may occur in real situations. This is a major motivation for the 
examination of data, with which much of the rest of this paper is concerned, to see 
whether they accord with the scheme. 

The SRSE scheme has similarities with rapid distortion theory. The relationship 
between the two is considered in Appendix A. The point is made there that the aims 
of the two are different, summarized by the words ‘interpretative ’ and ‘predictive ’. 
This difference in aim is even more germane when one compares the SRSE scheme 
with turbulence models that develop approximations to every term in the equations 
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(e.g. Cousteix & Aupoix 1982; Aupoix 1987; Lakshminarayana 1986; Warfield & 
Lakshminarayana 1987 ; Launder, Tselepidakis & Younis 1987 ; Andersson & Nilsen 
1989a, b ;  Speziale 1989; Speziale, Sarkar & Gatski 1990). The former is very 
simplistic when compared with the latter. On the other hand, the very attempts a t  
completeness in the latter may make i t  difficult to discern simplifying principles that 
aid our physical understanding of the dynamics. I n  this way the SRSE scheme 
complements the models. Indeed, the understanding it provides may promote 
improved modelling procedures. For it to  do this, the assessment in the following 
sections of when it is applicable is important. 

5. Application of the SRSE scheme to experimental data 
a, and ab can both be calculated from the turbulence intensity components and the 

Reynolds shear stress that  would normally be measured in an experimental 
investigation of a turbulent flow. Tests of the SRSE model by comparing them will 
be made in $$7 and 8. However, the most satisfactory way of making the comparison 
is not quite obvious and requires a brief discussion. 

Evaluation of a, is straightforward. From (15) and (17) along with the requirement 
that  = 0, one can easily find that 

_ _  
tan 201, = 2m/ ( u2 - v2). 

u: - u2 cos2 a, + 2 sin2 a, + m sin 2a, 

ui u2 sin2 a, + 2 cos2 a, -m sin ~ a , '  

However, if a, + ab, this value of u:/ui does not correspond to ab. (The difference is 
explained more fully and illustrated in Appendix _ _  B.) We therefore denote by a; the 
angle given by substitution of this value of ui/ui into (29). Moreover, the comparison 
is actually made between a, and a; rather than between a, and ab. What this 
amounts to is the following. One is taking the anisotropy of the turbulence as an  
empirical starting point. One then asks, for this degree of anisotropy, what value of 
a, does the hypothesis that  a, = ab predict, and compares the actual value of a, with 
this prediction. It should be noted that equality of a, and a; implies equality of a, 
and ab. Close agreement between a, and a; may thus be interpreted as showing close 
agreement between a, and ab and thus a favourable test of the scheme. 

There are two reasons for adopting the comparison between a, and a;. First, we 
have seen in $3 that the scheme must fail when (29) ceases to  have a solution. 
Working with ab rather than a; provides a much less clear indication of this cut-off 
and leads to  the danger that one attempts to interpret discrepancies between a,and 
ab in circumstances where comparison is meaningless. Secondly, although G/ui has 
to be obtained empirically, the scheme does predict trends in it, as discussed a t  the 
end of $3. One is thus evaluating a; in a way that makes use of p r t i a l  prediction of 
it by the scheme. One then needs, of course, to check that %/ui is varying in the 
appropriate way. 

(35) 
-- 

One can also find that the corresponding value of u:/ui is 
- -  

(36) - - - -  

_ _  

6. An extension to the SRSE scheme 
The following extension is generally relevant to developing flows in which S 

changes continuously with distance downstream. It has been developed, however, 
primarily in connection with the important question for whether the structure of the 
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turbulence is ever changed by rotation to give total energy transfer from the mean 
motion to the turbulence ; i.e. in the conventional formulation, whether Reynolds 
shear stress reversal occurs ; or in the present formulation, whether the principal axes 
ever rotate outside the range -in < a, < 0. In its simplest form, as above, the 
scheme never indicates such a development. As 11 + 2SI is increased Icos 2a;l increases. 
If it goes beyond unity, then (29) (with ab replaced by a;) just ceases to have a 
solution; it does not give a continuous development into, e.g., a; > 0. (This inference 
can also be seen from the formulation by Johnston et ul., but not so immediately.) 

We consider what happens when a, is continuously changing, due principally to 
continuous changes in S. Changes in a, might then, for example, lag behind those in 
a;. The axes can be chosen so that they are instantaneously the principal axes and 
u,u, = 0, but (25) (even without the [OT]) may make D ( u , ) / D t  =k 0. It can be 
shown that. when TFK = 0, 

Substituting (25), _ -  
Da,  

This may be rewritten as 

2 = -if[(l+25) ( 1-- cosc2aa) + [OT]. 
Da 
Dt (39) 

When IcI < 1, then c = cos2a; and (39) may be interpreted as indicating how a small 
difference between a, and a; causes a, to evolve. 

However, one may also consider the implications of (39) when 1c1 is a little greater 
than 1, a situation in which the model has no ‘equilibrium ’ solution with Da,/Dt = 0 
but may have an evolving one. This is probably not a meaningful point of view when 
cos 2a, and c are very different, but may be useful for small differences. In particular, 
we may apply it when Icos2aaJ is close to 1,  and it then relates to the question of 
Reynolds shear stress reversal. We consider the case when a, is close to 0, as may be 
expected from the considerations in $3 at  large positive S. (The argument can be 
applied to a, close to -in at large negative S with appropriate sign changes.) Then 

Da”=-$5(1+2S) Dt 

Reynolds stress reversal will be brought about by positive Da,/Dt so that a, passes 
from negative values to positive. This corresponds to c > 1 (remembering that we 
always have f[ < 0). This result will be used in $8. 

7. Application of the SRSE scheme to homogeneous shear flow 
Comparisons of a, and a; may be made for the results of either numerical 

experiments or laboratory experiments. We consider the former here and the latter 
in the next section. 

The only numerical experiments giving data in a form suitable for this treatment 
are those on a homogeneous shear flow by Bertoglio (1982) (see also Bertoglio et al. 
1978; Bertoglio, Charnay & Mathieu 1980). He considers a uniform velocity gradient 
in a fluid rotating at  rates such that S ranges from -0.875 to 0.875. The evolution 
of the turbulence from an initial condition of isotropy, is computed according to 
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rapid distortion theory. In particular, data are given on the turbulence intensity 
components and the Reynolds stress. 

From these a, and u:/ug have been evaluated using (35) and (36), and are plotted 
in figures 2 and 3. The value of U : / U ~  was then used in (29) to give ui and this is also 
shown in figure 2. (Note that, on Bertoglio’s graphs stabilizing rotation is on the left 
and destabilizing on the right, whereas the reverse convention is used here for 
consistency with that used in Bidokhti & Tritton (1992) - and the ‘Richardson 
number convention ’ that positive corresponds to stabilization.) 

This case has advantages and disadvantages for the present purpose. A major 
advantage is that S is uniform throughout the flow and perfectly known - in contrast 
with the laboratory experiments to be examined in $8. 

_ -  
_ -  
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On the other hand, the turbulence is evolving with time, and full data on 
intensities and the Reynolds stress arc not given for other times. One docs not know 
whether these would give similar results. 

A more serious disadvantage becomes apparent from figure 3 ;  the turbulence is 
very highly anisotropic in the sense that u;/ui is large, greater than 10 throughout 
the range for which a; is evaluable and with a maximum greater than 20. (For SZ = 0, 
this is a very significant discrepancy from laboratory results on homogeneous shear 
turbulence (Rose 1966). Applying (35) and (36) to  the values a t  which thc turbulcncc 
parameters equilibrate gives a, = - 31" and u:/ui = 3.1. The anisotropy is less before 
equilibration. Townsend (1976, p. 87) notes that a rapid distortion modcl ovcr- 
estimates the anisotropy.) This disadvantage has two consequences for thc 
comparison of a, and a;. First, the range of S for which (29) has a solution is 
restricted. It scarcely extends into the stabilized sidc, and so the model can work only 
for destabilization. (The data do not extend to rcstabilization, S < - 1 . )  Secondly, a: 
differs little from the angle 6 introduced in $2 (equation (13)). Consequently, the data 
do not distinguish much between the hypothesis that  a, !zab  and the cruder 
hypothesis that a, x 8 ;  i.e. that  the Reynolds stress tensor is directly oriented by the 
instability mechanism considered in $2. 

With these qualifications, the closeness of the two curves on the left-hand side of 
figure 2 suggests that  the model provides a good description of the primary effects 
of rotation, when these are destabilizing. 

In considering the significance of this conclusion, we need to note some points in 
connection with the terms summarized by [OT] in (18)-(21). First, the homogeneity 
of the flow implies that terms representing transport of turbulence energy (or 
Reynolds stress) are absent. Nothing may be inferred about any role these terms 
might play in other flows. Secondly, since Bertoglio's computations are based on 
rapid distortion theory, transfer of energy between wavenumbers is excluded. 
Dissipation processes will not be correctly modelled for either non-rotating or 
rotating flow. One is thus assuming a t  the outset that  these processes play a 
secondary role. 

Thirdly, Bertoglio (1982) specifically presents (his figure 6) results on the 
pressure-strain correlation terms of equations (18)-( 2 1 )  in conventional coordinates 
(a = 0) and notes substantial changes due to rotation. One can thus assess directly 
the role of these terms. A full analysis will not be presented here, but two points may 
be made. First, the largest change is in the rate of energy transfer to 2. Such a 
change is to be expected if that  component participates in the stabilization or 
destabilization, as noted in $4. Secondly, one may apply an appropriate coordinate 
transformation to the data in Bertoglio's figure 6 to determine the term under 
discussion in equation (21) for DvpJDt when a = a,. The results are consistent with 
the supposition that reorientation of the turbulence by this effect is relatively small. 
For example, over the range for which a; is definable, p(au,/ax,+auz/axl) averages 
about 0.3 times p(au/ay+ awlax). 

_ _  

_ _  

8. Application of the SRSE scheme to a wake and a free shear layer 
Laboratory experiments providing data with which the SRSE scheme may be 

compared are those on a wake by Witt &, Joubert (1985) and those on a free shear 
layer by Bidokhti & Tritton (1990,1992). The advantages and disadvantages of such 
flows for testing the scheme are just the reverse of those of the numerical experiments 
on homogeneous shear flow considered above. The advantages are first that  none of 
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FIGURE 4. a, (crosses) and a; (open symbols) from laboratory experiments on a wake. Derived from 
data in Witt k Joubert (1985) and Witt (1986) via figures 9 (a ) ,  11  (a) ,  and 16 of Bidokhti & Tritton 
(1992). x and 0: 2 8 d / U 0  = 0.016 (or 0);  x / d  = 80, 120, 180. +, 0 :  2 8 d / U 0  = 0.0080 (or 0); 
x / d  = 340. Kote: the measurements at Q = 2.72 give no value of a; (cos2a; > 1) .  

the ‘other terms’ are in principle zero and so the scheme is being more stringently 
tested; and secondly that the turbulence is not so highly anisotropic and so the range 
of potential applicability of the scheme is much greater. The disadvantages are that 
S both varies from place to place and has to be found from the experimental results 
(in a way that may give poor accuracy because i t  involves estimating the gradient 
of the mean velocity profile). 

The spatial variations of S involve both variations with distance downstream and 
variations across the flow. The extension to  the scheme in $6 was introduced to allow, 
at least in part, for the former. The variability of S across the flow is accompanied 
by variability of the other quantities [w2/u2 and -m/(u2v2);] involved in the 
evaluation of a, and a:. The procedures adopted to give the results below are 
extensions of the data processing in Bidokhti & Tritton (1992). The reader wishing 
to  know exactly how the quantities plotted in figures 4-6 have been derived will need 
to refer to that paper; this is the case for the wake as well as for the shear layer, 
because Witt & Joubert’s data are reformulated there for comparison with the shear- 
layer data (see, in particular, Appendix A of Bidokhti & Tritton 1992 or the fuller 
presentation in Bidokhti & Tritton 1990). However, the simplifications involved 
amount to assuming that the structure of the turbulence is governed primarily by 
processes in the region where the turbulence energy production is strongest (other 
points being of minor significance with little effect on the outcome). This 
simplification is more severe for the wake than for the shear layer, because of the 
existence of another region of strong energy production, with the opposite sign of S ,  
on the other side of the wake. Basically one is supposing that each side evolves 
independently of the other; comparison of the wake and shear layer in Bidokhti & 
Tritton (1992) suggests that this assumption is better than might be guessed. 

_ _  _ _  
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ui/u: from symbols as in figure 4. 

Figures 4 and 6 show the comparison of a, and a; for the two flows. In each case 
the abscissa is the similarity parameter used in Bidokhti & Tritton (1992) (with 
variations in this being produced mainly by measurements at  different distances 
downstream in the case of the wake and by changes in the rotation rate in the case 
of the shear layer). Figure 16 of that paper relates S to Q and Q'. For the present purpose 
of comparing a, and a;, the main point is that, as in figure 2, the right-hand sides of 
figures 4, 5, and 6 correspond to stabilization and the left to destabilization and 
restabilization. 

Figure 5 shows ui/ui, calculated on the route to a; but of some interest in its own 
right, for the wake. The corresponding plot for the shear layer is figure 13 _ -  of Bidokhti 
& Tritton (1992) ; the main features relevant to the following are that ul/ui has a 
maximum of about 4.5 at about Q = -5 and that i t  falls particularly rapidly as Q 
becomes more negative than this, with the turbulence being almost isotropic when 

Table 1 of Bidokhti & Tritton (1992) lists results of previous shear-layer 
experiments with SZ = 0 for comparison purposes. The table includes quantities 
relevant to the present considerations. (ab is listed as well as a;; the reason for 
preferring the latter is not so relevant here.) 

The wake results are shown as individual points, since there were relatively few 
measurements, with crosses in figure 4 representing a, and open symbols a;. The 
correspondence between a, and a; on the left-hand side of figure 4 (the destabilized 
and incipient restabilized range) is remarkably close considering the way the scheme 
has been applied (ignoring variations of S across the wake). It _ -  should be remembered, 
however, that the scheme also implies a maximum in u?/ui when a, =-45" 
(2Q2/U0 = - 1.2) and this is not conspicuous in figure 5. 

Because of the much larger amount of data, with considerable scatter, the shear- 
layer results are represented by smoothed curves. The smoothing was actually 
carried out on the original quantities from which a, and a; are calculated. (Fuller 
details of the procedure are available in Bidokhti & Tritton 1990.) Thus the a, curve 
in each part of figure 6 is effectively a smoothing of figure 12 of Bidokhti & Tritton 
(1992), though not actually obtained directly from it. Figures 6(a )  and 6 ( b )  differ in 
the way a; has been evaluated, specifically in the value of S (for use in (29)) taken 

- _  

Q < -15. 
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FIGURE 6. a, and a; from laboratory experiments on a free shear layer. (a) Curves derived from 
smoothing of figures 9 (a) and 11 (a)  and curve in figure 16 of Bidokhti & Tritton (1992). ( b )  Curves 
derived as in (a )  except that So = 0.14Q used instead of curve in figure 16. 

at  each value of Q. Figure 6 ( a )  uses the ‘best estimate’ of So(&) as shown in figure 
16 of Bidokhti & Tritton (1992), and may therefore be considered the best available 
comparison between a, and a;. However, as noted in the other paper, the 
experimental uncertainties in the determination of So are considerable and it is not 
certain that all the details of figure 16 are significant. Consequently, the analysis has 
also been made using the simplest possible relationship of So a Q (with the constant 
of proportionality taken a t  the average value of 0.14); this corresponds to ignoring 
the ‘feedback effect’ of changes in the mean velocity profile resulting from the 
changed structure of the turbulence. The upshot is figure 6 ( b ) .  

The differences between figures 6 ( a )  and 6 ( b )  indicate a need for caution in the 



Stability of turbulent shear flow in rotating fluid 519 

following discussion of the former. (The differences can be viewed more positively if 
one is prepared to interpret the data assuming the validity of the SRSE scheme, 
rather than trying to use it to test the validity. One can then argue that the better 
agreement of figure 6 (a)  indicates what processes are important in determining the 
structure of the turbulence - as represented by a,. This aspect is considered in $57.1 
and 7.5 of Bidokhti & Tritton 1992.1) Figure 6 ( a )  shows close correspondence 
between a, and a; for a region covering the _ _  destabilized range and extending into the 
stabilized and restabilized ranges. Also U : / U ~  has a maximum in the destabilized 
range - see above - as implied by the scheme. We consider the large-positive-& 
behaviour below. When Q becomes negatively large, the behaviour of a; becomes 
complicated. The formal algebra gives the curves shown. In figure 6 (a) ,  a; ceases to 
exist (cosa; < - 1) for a short range (although only a slightly different choice of the 
original smoothed curves would eliminate this range). It then reappears and 
increases. The initial rapid increase is associated with a region in which -So 
decreases as -Q increases (figure 16 of Bidokhti & Tritton 1992). The subsequent -- 
more gradual increase, also seen in figure 6 ( b ) ,  derives from rapid decrease of u:/ut. 
One would probably not expect a, to follow a; in this respect ; i.e. for rotation of the 
principal axes of the Reynolds stress tensor to actually be reversed as - Q increases. 
In fact a, remains around -90" (although it also becomes increasingly ill-defined as 
the turbulence becomes nearly isotropic). 

Section 6 has described an extension to the scheme that allows for flow 
development. In  most respects the data do not warrant considering this refinement, 
but i t  does aid interpretation of the behaviour of the shear layer at large IQI, 
particularly the difference between positive and negative &. For the former a, 
becomes positive (corresponding to reversal of the Reynolds shear stress from its 
normal sign). We have seen that the simplest form of the scheme does not allow such 
reversal (but just fails) whereas the extended form does. In fact, on the positive Q 
side, once a; has ceased to exist, c > 1 (c being defined in $6) and increase of a, 
through 0 is to be expected. It occurs, although at a value of Q significantly larger 
than where c becomes greater than 1. For negative Q, in contrast, the features 
described in the previous paragraph imply that c does not become less than - 1  
(except possibly for a short range). The extended scheme does not suggest the 
occurrence of Reynolds stress reversal (a,  decreasing through -90') and, in fact, it 
does not occur. 

9. Concluding remarks 
This paper originated in an attempt to clarify and synthesize the previously rather 

fragmented concepts underlying stabilization, destabilization, and restabilization 
and the role of the parameter B in specifying these. It has developed in a way that 
has made the SRSE scheme far the largest part of this clarification, and this is the 
part requiring some rounding off. 

The improvements to our understanding of the SRSE scheme have a negative 
aspect and a positive aspect. The former is that limitations to its applicability - the 
fact that a; does not exist for large (SI and the points considered in $4 -that had 

t Ideally one would prefer either that the data were clearcut enough to test the scheme 
unambiguously or that the scheme was sufficiently well established for it to be confidently used in 
interpreting the data. In fact one is forced to attempt both simultaneously. Hence, optimistically, 
agreement lends support to both the scheme and the interpretation ; or, pessimistically, is 
fortuitous. 
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perhaps not previously been fully recognized have been made explicit. The latter is 
the formulation and use of a procedure to identify when the scheme is a good 
representation of the effect of rotation on the turbulence-mean flow interaction. 

The results of this use are conveyed by figures 2, 4, and 6. The similarity of the 
trends shown by the three flows is notable and suggests that  the results are of some 
generality. All three flows show close correspondence between a, and a; - and thus 
the behaviour indicated by the scheme - in the destabilized range (conveniently 
identified in this context as the range in which lsin2u,) is larger than its value for 
S = 0). The similarity of the trends continues into the stabilized region, except that  
in the case of figure 2 the abnormally high anisotropy results in the quick termination 
of the a; curve. As 8 increases, significant differences between a, and a; appear; in 
each case the former varies more slowly than the latter. The qualitative prediction 
that rotation reduces -a, is fulfilled, but quantitative correspondence with the 
scheme becomes poorer. One is then approaching the region in which the limitations 
mentioned above become operative and the scheme must lose applicability. 

On the negative-S side, only the shear layer data extend into the restabilized 
range. Use has been made of the scheme, in conjunction with other considerations, 
in interpreting the behaviour here (in $8 and in Bidokhti & Tritton 1992). However, 
in view of the fact that  it is a single case, and one involving considerable 
complications, it may be premature to draw any general conclusions. This is the 
range for which there is the greatest need for further experiments on various flows. 

Appendix A. The SRSE scheme and rapid distortion theory 
There are evident similarities between the SRSE scheme and rapid distortion 

theory (RDT) (Savill 1987 and references therein). This Appendix aims a t  clarifying 
the relationship between the two. 

I n  a sense the SRSE scheme is a yet further simplification of the equations 
additional to  the simplifications made in RDT. The latter also ignores many of the 
terms denoted [OT] in equations (18)-(21). It does, however, partially include the 
pressure-strain correlation term responsible for transfer of energy between 
components. RDT thus takes into account a process that we have noted as one of the 
reasons for the limitations of the SRSE scheme. 

However, the two formulations are rather different in their points of view. They 
contribute in different, complementary, ways to  our overall understanding. The 
difference concerns the way each formulation is used and the purpose of so using it. 
It may be summarized by saying that RDT is ‘evolutionary ’ and ‘predictive ’, whilst 
the SRSE scheme is ‘quasi-equilibrium ’ and ‘interpretative’. RDT is usually used to  
calculate, subject to  various approximations and assumptions, the development of 
the structure of shear flow turbulence from some supposed initial state, such as 
isotropic turbulence. I ts  predictions may be compared (with varying degrees of 
success) with observed structure. It has extensively used for non-rotating shear flows 
(e.g. Townsend 1970, 1980) and its use for rotating flow (Bertoglio 1982) extends its 
applications. The SRSE scheme in contrast takes the structure of the non-rotating 
flow as an empirical starting point and then attempts to provide understanding of 
the way this is modified by rotation. In so doing, i t  assumes that the structure is 
largely governed by local conditions - the ‘ quasi-equilibrium ’ aspect (although the 
extension in $6 relaxes this to some extent). The equations are not solved but used 
to analyse data and so to see whether the effect of rotation on the turbulence-mean 
flow interaction can be interpreted in this way. 
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Appendix B. Why aI, + ab 
It was noted in $5 that the quantity a; plotted in figures 2, 4, and 6 differs from 

a b ,  defined as the value of a that makes the right-hand side of (21) equal to zero when 
the [OT] are ignored. To clarify this distinction, table 1 lists a selection of the data 
underlying figure 6 ( b ) ,  and various quantities calculated from the data. This case has 
been chosen partly because the assumed proportionality of S to Q makes it easier to 
relate table and figures ; but mainly because points with poor correspondence 
between a, and a; are needed to illustrate the difference between ab and a;. 

Column 1 lists the values of S selected for this illustration; as explained in $8, S 
is here taken as S = 0.14Q. 

Columns 2 and 3 list the observed quantities (based on smoothing of data in 
Bidokhti & Tritton 1992) from which subsequent columns are calculated. These 
columns are labelled with 'a = -90"' (making u1 = -v and u2 = u)  for consistency 
with the labelling of columns 5, 6 ,  8, and 9 and thus as an aid to seeing the 
relationships between the various quantities. 

Column 4 lists values of a,, the orientation of the major principal axis of the 
Reynolds stress tensor, evaluated from (35) .  The ratio of the major to minor principal 
axes is then given by (36) and is listed in column 5. The entries in column 6 are zero 
by definition ; the column is nevertheless included for direct comparison with 
columns 3 and 9. 

From its definition as the value of a that makes the explicit terms on the right- 
_ -  hand side - of (21) equal to zero, ab may be evaluated by writing 3 and 2 in terms of 
u2,v2,  uv and ab. This gives 

- 
v2( 1 +S) -28  

m ( l + 2 S )  . 
tan2ab = 

Values so obtained are given in column 7,  and related quantities in columns 8 and 9; 
e.g. column 8 is obtained using (36) but with ab replacing a,. (Columns 8 and 9 are 
of little significance for the structure of the turbulence, other than for the purpose of 
the present illustration.) 

Column 10 gives values of the right-hand side of (29) (denoted c ,  cf. $ 6 ) ,  and 
column 11 the consequent values of a;. The last two lines have been selected as lying 
on either side of the point a t  which _ _  a; ceases to exist. The reason that a; is not 
identical with ab is that the value of u:/u: used in (29) is the quantity in column 5 ,  
not that in column 8. The two are the same when a, = ub and so then a, = a; also. 
The cases in the table have been selected to include some for which a, and ab are 
close, and therefore the entries in columns 5 and 8 are close, the entry in column 9 
is small, and a; is also close to a,; and some for which the departures are substantial. 

Hence, the hypothesis that a, x ab can be tested by comparing a, and a;. The 
reasons for choosing the latter comparison are given in $5. 

When there are significant departures from a, x ab, ab and a; tend to be closer to 
one another than either is to a,. Equality of or a difference between ub and a; is not 
itself necessarily a significant indicator; for example, when S = -0.5, ub and a; are 
automatically equal to one another a t  -45". When Icl > 1 and so a; is undefined, 
then one cannot have a, = ab. (The fact that the model must fail a t  large IS1 can 
be seen in terms of the behaviour of ub as well as that of a;. If one formally puts 
ISI+-oo in (36) ,  one gets 

and there is no possibility that a, = ab. What is much more complicated to see in this 

tan 2a, tan 201, = - 1 (B 2) 
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a = -90' a = a, 

1s 

-0.84 
-0.56 

0 
0.28 
0.70 
0.84 

- 0.28 

Chlumn 1 

-0.84 
-0.56 
- 0.88 

0 
0.28 
0.70 
0.84 

Column 

- 
??2 

U 2  

2.25 
1.68 
0.83 
0.655 
0.61 
0.585 
0.585 

2 

- - 

ab 

(deg.) 

-51 
- 47 
-39 
- 32 
- 24 
- 13.5 
- 1 1  

7 

an - 
UV 

(deg.) -~ -_ 
(u2 2P)t 

0.25 - 74.5 
0.525 -58.5 
0.46 - 39.5 
0.40 - 3 1 
0.365 - 28 
0.31 - 24 
0.29 - 23.5 

3 4 

a = ab 

1.9 -0.34 
3.2 -0.255 
2.75 -0.005 
2.6 0.02 
2.5 -0.06 
2.15 -0.16 
2.1 -0.175 

8 9 

- 

4 
4 
- - 

"65 
3.6 
2.75 
2.6 
2.5 
2.3 
2.25 

5 

c 

-0.305 
-0.068 

0.205 
0.14 
0.67 
0.95 
1.03 

10 

TABLE 1. Examples of quantities relating t o  figure 6 ( b ) :  see text. (Note that  the figures are 
quoted with more rounding than was used in the ralculation; they may not check exactly.) 

formulation is that decreasing anisotropy allows the model to be applied, with some 
prospect of success, to higher values of IS1. Calculation of ab when a; does not exist 
tends to lead to erratic behaviour. In these circumstances, ab is probably a quantity 
of little significance for the structure of the turbulence.) 
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